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SUMMARY, 

Genome-wide association studies (GWAS) have successfully identified many quantitative trait 
loci (QTL) associated with complex traits in humans and livestock. However, pinpointing the causal 
variants and target genes through which these QTL influence phenotypes remains challenging. 
Transcriptome data from mammary tissue were analysed using genetic score omics regression 
(GSOR). This method correlates observed gene expression to genetically predicted phenotypes and 
is used to find associations between gene expression and genomic breeding values (GEBVs). GSOR 
identified 706 genes whose expression in mammary glands is significantly associated with GEBVs 
estimated for milk lactose percentage (FDR ≤ 10%). We observed a significant co-occurrence 
between the identified genes and GWAS signals for lactose percentage reported in an independent 
study (P=2.5E-10; odds-ratio=3.8). The co-occurring genes with GWAS signals enriched for ion 
transport Gene Ontology (GO) term included ATP6V0A2, DNAH10, LRRC8B, LRRC8C, KCNJ2, 
P2RX4, and SLC34A2. These findings introduce known and novel candidate genes related to the 
regulation of milk lactose, showing their involvement in the ion transport mechanism and supporting 
the importance of the osmoregulatory function of lactose in milk. 

 
INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified many quantitative trait 
loci (QTL) associated with complex traits in humans and livestock. However, pinpointing the causal 
variants and target genes through which these QTL influence phenotypes remains challenging. This 
difficulty arises due to the small effect sizes of most variants, linkage disequilibrium (LD) among 
nearby variants, and the fact that most QTLs are located in non-coding regions of the genome. QTL 
in non-coding regions are believed to affect a phenotype by regulating the expression of their target 
genes; in such cases, they are referred to as expression QTL (eQTL). 

Three types of evidence are used to identify the genes through which eQTL operates: (1) genes 
located near the most significant GWAS variant, (2) genes whose expression is correlated with the 
trait based on the GSOR method (unpublished data), and (3) genes whose physiological roles are 
related to the trait. Although none of these types of evidence is definitive on its own, their 
convergence on the same genes provides convincing evidence supporting the correct identification 
of genes (unpublished data). 

The current study has three primary objectives: (1) to identify genes whose observed expression 
levels in the mammary gland of NZ dairy cows are significantly associated with their estimated 
genomic breeding values (GEBVs) for milk lactose percentage, (2) to investigate the extent of co-
occurrence between the associated genes and signals obtained from an independent GWAS on 
lactose percentage, and (3) to determine whether the co-occurring genes (with GWAS signals) 
enriched in a specific Gene Ontology (GO) term. 
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MATERIALS AND METHODS 
Phenotypic data. Phenotypic data for test-day lactose percentage was provided by DataGene 

Pty Ltd (Melbourne, Australia). Outliers deviating ±3 SD of the mean phenotypic value were 
excluded. Test-day records were included if the cow’s age at calving was between 18-25 months 
and days in milk (DIM) between 5-315 days. The final data contained ~4.99 million test day records 
for ~ 477 K cows. Using ASReml (Gilmour et al. 2022), adjusted phenotypes were estimated and 
averaged for each cow (i.e. effect of Cow) using the model proposed by Khansefid et al. (2023): 

𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = µ + 𝑯𝑯𝒊𝒊𝑻𝑻𝑻𝑻𝒋𝒋 + 𝑴𝑴𝒌𝒌 + 𝒑𝒑𝒑𝒑𝒑𝒑(𝑫𝑫𝑫𝑫𝑫𝑫,𝟖𝟖) + 𝒑𝒑𝒑𝒑𝒑𝒑(𝑨𝑨𝑨𝑨𝑨𝑨,𝟐𝟐) + 𝑪𝑪𝑪𝑪𝑪𝑪𝒍𝒍 +  𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 
where, 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊is the test-day record for lactose percentage, µ is the effect of overall mean, 𝑯𝑯𝒊𝒊𝑻𝑻𝑻𝑻𝒋𝒋 is 
the effect of the ith herd and jth test date; 𝑴𝑴𝒌𝒌  is the effect of the kth calving month; 
𝒑𝒑𝒑𝒑𝒑𝒑(𝑫𝑫𝑫𝑫𝑫𝑫,𝟖𝟖) and 𝒑𝒑𝒑𝒑𝒑𝒑(𝑨𝑨𝑨𝑨𝑨𝑨,𝟐𝟐) are the regression coefficients of Legendre polynomials of order 1–
8 for DIM and of order 1–2 for age at calving in months; 𝑪𝑪𝑪𝑪𝑪𝑪𝒍𝒍 and 𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 are the random effect of 
the lth cow and the random residual term, respectively. 

Genotype data. Genotype data were available for 81,658 Australian cows, of which 79% were 
Holstein, 16% Jersey and 5% Aussie Red. Genotypes were imputed to whole genome sequences 
using Run9 of the 1000 Bull Genomes project (Daetwyler et al. 2014). Variants with minor allele 
frequency (MAF) < 0.01 and genotype frequencies departing from Hardy-Weinberg equilibrium (P 
< 1E-8) were excluded. LD pruning was performed to exclude variants that are in high LD (r2 > 
0.95). These procedures retained 1,181,628 variants for subsequent analyses. Using genotypes and 
phenotypes of 81,658 cows described above, we trained a BayesR3 (Breen et al. 2022) model to 
estimate prediction equations (SNP effects) for lactose percentage. The model was as follows: 𝒚𝒚 =
𝑿𝑿𝑿𝑿 + 𝑽𝑽𝑽𝑽 + 𝒆𝒆, where 𝒚𝒚 is vector of adjusted phenotypes; 𝑿𝑿 is an incidence matrix, 𝐮𝐮 is a vector of 
fixed effect including breed (three levels); 𝐕𝐕 is the coded genotype; g is a vector of SNP effects; and 
e is the residual term. BayesR3 model was run using the default parameters. The estimated SNP 
effects were used to calculate 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮� 𝒄𝒄𝒄𝒄𝒄𝒄 (in the gene expression data) using nearby variants (1 Mb) 
to a specific gene. 

Gene expression data and GSOR. Expression measures of ~12.3 K genes in mammary tissue 
from ~350 New Zealand (NZ) cows (including Holstein Friesian, Jersey and their crosses) were 
used. Imputed whole genome sequence variants were available for these cows. The processing of 
samples, RNA extraction, library preparation, and RNA sequencing were described in detail in 
Littlejohn et al. (2016). The same set of sequence variants as described for the Australian data were 
kept for the NZ animals. To perform GSOR, we used a method called genetic score omics regression, 
abbreviated to GSOR (unpublished data). This method estimates the significance of the correlation 
between the expression level of a gene and the GEBVs derived from nearby variants of that gene 
(𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮� 𝒄𝒄𝒄𝒄𝒄𝒄). The following model was used: 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮� 𝒄𝒄𝒄𝒄𝒄𝒄 =  𝒃𝒃Ω + 𝒈𝒈 + 𝒆𝒆 
where, 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮� 𝒄𝒄𝒄𝒄𝒄𝒄 is a vector calculated using the effect estimated for variants located in the 1 Mb 
region surrounding the gene, 𝐛𝐛 is the regression coefficient of the 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆� 𝒄𝒄𝒄𝒄𝒄𝒄 on Ω, which is a vector 
representing gene expression measures; and 𝐠𝐠  is a vector of random polygenic effects with 
𝐠𝐠~N(0,𝐆𝐆σg2), where G is the genomic relationship matrix estimated from genome-wide SNPs, and 
𝜎𝜎𝑔𝑔2 is the additive genetic variance explained by genome-wide SNPs; 𝒆𝒆 is the vector of residuals 
with 𝒆𝒆~𝑁𝑁(0, 𝑰𝑰𝜎𝜎𝑒𝑒2), where I is an identity matrix and 𝜎𝜎𝑒𝑒2 is residual variance. To account for multiple 
testing, we applied Benjamini-Hochberg correction and genes with FDR ≤ 0.10 were deemed 
significant. 

Do GSOR significant genes overlap with GWAS signals? To test this hypothesis, we 
investigated the overlap (co-occurrence) between the GSOR significant genes, whose expression 
levels are correlated with 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆� 𝒄𝒄𝒄𝒄𝒄𝒄, and a GWAS on lactose concentration previously reported in the 
study by (Lopdell et al. 2017). GWAS results were downloaded and lifted over to the new reference 
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genome (ARS-UCD 1.2), and SNPs with 𝑃𝑃 ≤ 1𝐸𝐸 − 8 was regarded as significant (i.e., GWAS 
signals).  

To find the degree of overlap between the GSOR significant genes and GWAS signals, we 
partitioned the genome into non-overlapping windows of 100 Kb. We counted the number of 
windows containing at least one GWAS signal, and a total number of GSOR significant genes 
located within these windows. These quantities were compared against a total number of windows 
and total number of GSOR significant genes. We used a Fisher Exact test to investigate significance 
of our findings at alpha ≤ 0.05. 

Functional annotation analyses. We conducted functional annotation analyses for the GSOR 
significant genes that co-occur with GWAS signals, using the total number of GSOR significant 
genes as the background. We used DAVID bioinformatic tool (Sherman et al. 2022) for this analysis 
with UniProt Keyword annotation, and terms with FDR ≤ 0.05 were considered significant. 

 
RESULTS AND DISCUSSION 

The correlations between the expression of 12,237 mammary genes across cows and 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆� 𝒄𝒄𝒄𝒄𝒄𝒄 
for lactose percentage were tested using GSOR. Of the tested genes, 704 significant associations 
were found at FDR ≤ 10%. However, similar to GWAS, GSOR is also susceptible to false positives 
(unpublished data). Therefore, we assessed the overlap between GSOR significant genes and GWAS 
signals by evaluating the extent of co-occurrence within non-overlapping windows. The results are 
presented in Table 1 and suggest there is a meaningful biological agreement between the GWAS 
findings and the GSOR results. For example, using 100 Kb windows, there were 24,861 non-
overlapping windows, and 706 GSOR significant genes. We found 321 windows containing GWAS 
signals, and 35 GSOR significant genes located within these windows (co-occurred with GWAS 
signals), resulting in a p-value of 2.5E-10 (odds ratio=3.8). 
 
Table 1. Fisher Exact Test of co-occurrence between GSOR significant genes and GWAS 
signals using non-overlapping windows of different sizes 
 
Window 
size (Kb) 

N of 
Windows 

N of GSOR 
significant 
genes 

N of windows 
containing 
GWAS signal(s) 

N of GSOR genes in 
windows containing 
GWAS signal(s) 

P-value 
(odds-ratio) 

100 24,861 706 321 35 2.5E-10 (3.8) 
500 4,984 706 186 57 3.1E-6 (2.16) 

 
GSOR can be confounded by LD where the correlation between gene expression and trait can 

be caused by SNP marker(s) instead of a causal variant (unpublished data). Such a correlation does 
not indicate a causal link between the expression of the gene and the trait. Therefore, additional 
sources of evidence could help prioritize the causal gene-trait associations at GWAS loci. 

If GSOR significant genes co-occurring with GWAS signals include causal genes, they are 
expected to show enrichment for biologically relevant GO terms. We tested this hypothesis by 
investigating the enrichment of GO terms for the genes that show a GSOR correlation and are near 
GWAS signals. Our results showed the biological terms Transport, and its child term Ion transport 
are significantly enriched (Table 2) with 11 and seven genes involved in these GO terms, 
respectively. 

Our findings are consistent with a previous study on milk lactose traits (Lopdell et al. 2017), that 
highlighted the role of membrane transport genes, including LRRC8C, P2RX4, KCNJ2 and ANKH 
as key modulators of milk lactose content. In addition to the first three genes, our study also 
identified novel genes including ATP6V0A2, DNAH10, LRRC8B and SLC34A2 which are involved 
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in Ion transport biological process. These genes are expected to influence osmotic balance through 
modulation of ion concentrations in milk. 
 
Table 2. Enrichment of GSOR significant genes co-occurred with GWAS signals compared to 
background genes (i.e., the total GSOR significant genes) 
 

Category Term Genes P value FDR 

Biological process Transport 
ATP6V0A2, RAB5C, DNAH10, LRRC8B, 
LRRC8C, KCNJ15, KCNJ2, P2RX4, P2RX6, 
SLC34A2, SLC50A1 

2.64E-4 5.5E-3 

Biological process Ion transport ATP6V0A2, DNAH10, LRRC8B, LRRC8C, 
KCNJ2, P2RX4, SLC34A2 7.4E-4 8.2E-3 

Molecular 
function Ion channel LRRC8B, P2RX4, P2RX6, LRRC8C, 

KCNJ15, KCNJ2 1.5E-4 2.5E-3 

 
CONCLUSION 

Our study identified 704 genes from mammary gland, whose expression levels were associated 
with milk lactose percentage. Of these genes, a significant proportion showed co-occurrence with 
GWAS signals reported in an independent study. Enrichment analysis of these co-occurring genes 
highlighted transport and ion transport processes, implicating both known and novel membrane 
transport genes in regulating osmolality and influencing milk lactose concentration. These findings 
offer valuable insights into the genetic basis and biological regulation of lactose percentage. 
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